fin moieties, upon adduct formation, are less striking in the C_2H_4 than in the C_2F_4 unit, which is explained in terms of the weaker metal to olefin π bonding in the Rh- C_2H_4 than in the Rh- C_2F_4 bond.²⁷ On the other hand, X-ray analyses show that IrBr(CO)(PPh₃)₂(TCNE),¹⁵ IrH(CO)(PPh₃)₂(FN),²⁸ and IrCl(CO)(AsPh₃)₂(TCNE)²⁹ adopt trigonal-bipyramidal configurations with the cyanoolefins coordinated rigidly and that the degrees of distortion of their geometries, upon adduct formation, indicate strong π -bonding interactions between the iridium atoms and the cyanoolefins. No evidence for the free rotation of the cyanoolefins around the coordination bond is reported for these compounds.¹

Comparison of 1a and 1b with 2a and 2b, respectively, shows that the replacement of the two isocyanides with two triphenylphosphines in the parent complexes has produced a change in the bonding behavior of TCNE toward the rhodium atom, from nonrigid to rigid. It is well known that the tertiary phosphines have more σ -donor and less π -acceptor capacity compared with the isocyanides.³⁰ Thus an expected increase in the transition metal basicity of $[Rh(RNC)_2(P-Ph_3)_2]ClO_4$ compared with that of $[Rh(RNC)_4]X$, which is evidenced from a comparison of their $\nu(N \equiv C)$ data (Table II), seems to cause formation of the rigid adducts 2a and 2b. In addition, $[Rh(RNC)_2(PPh_3)_2]ClO_4$ can react with FN (electron affinity of 0.78 eV²⁵), and in the adducts formed (6a and 6b) the FN is rotating. This result suggests that a

(27) L. J. Guggenberger and R. Cramer, J. Amer. Chem. Soc., 94, 3779 (1972).

(28) K. W. Muir and J. A. Ibers, J. Organometal. Chem., 18, 175 (1969).

(29) J. B. R. Dunn, R. Jacobs, and C. J. Fritchie, Jr., J. Chem. Soc., Dalton Trans., 2007 (1972).
(30) F. Basolo and R. G. Pearson, "Mechanisms of Inorganic

(30) F. Basolo and R. G. Pearson, "Mechanisms of Inorganic Reactions," 2nd ed, Wiley, New York, N. Y., 1967, p 538. moderate π -bonding interaction between the more basic Rh(I) substrate and a rather weak π acid FN yields the non-rigid adducts.

Although Raman spectra of some of these compounds were measured, they were unfortunately too complicated to assign the $\nu(C - C)$ of the coordinated olefins with confidence, precluding a quantitative comparison of the π -bonding interaction. In connection with [Rh(RNC)₂. (PPh₃)₂(olefin)]ClO₄ (olefin = TCNE or FN), it is suggestive that the analogous iridium compounds [Ir(p-CH₃C₆H₄NC)₂. (PPh₃)₂(olefin)]ClO₄ (olefin = TCNE, FN, or maleic anhydride) synthesized by us recently³¹ are found to have trigonal-bipyramidal configurations with the rigidly bonded olefins. In view of the generally stronger basicity of a certain Ir(I) complex than that of an analogous Rh(I) complex,² the stronger π -bonding interactions between the iridium atom and the olefins have probably resulted in the rigid adducts even for the FN and maleic anhydride.

Acknowledgment. We are indebted to Professor H. G. Kuivila, Visiting Professor invited by the Japan Society for the Promotion of Science at Osaka University, for improvement of the text of this paper.

Registry No. 1a, 51567-54-5; 1b, 36682-31-2; 1c, 36620-24-3; 1d, 51567-56-7; 1e, 36620-25-4; 2a, 51567-62-5; 2b, 51567-63-6; 3a, 51567-58-9; 3b, 51567-60-3; 4, 51567-61-4; 5a, 51635-58-6; 5b, 51635-59-7; 6a, 51635-61-1; 6b, 51635-63-3; [Rh(CH_3NC)_4]BPh_4, 34742-53-5; [Rh(p-CH₃OC₆H₄NC)₄]ClO₄, 14075-09-3; [Rh(p-CH₃-C₆H₄NC)₄]ClO₄, 51567-65-6; [Rh(p-CH₃-C₆H₄NC)₄]ClO₄, 51567-65-6; [Rh(p-CH₃-C₆H₄NC)₄]ClO₄, 51567-65-6; [Rh(p-CH₃-C₆H₄NC)₄]ClO₄, 51567-65-70; [Rh(p-CH₃-C₆H₄NC)₄]ClO₅, 51567-67-0; [Rh(p-CH₃-C₆H₄NC)₂]Cl, 51567-67-0; [Rh(p-CH₃-C₆H₄NC)₂]Cl, 51567-67-0; [Rh(p-CH₃-C₆H₄NC)₂]Cl, 51567-67-0; [Rh(p-CH₃-C₆H₄NC)₂]ClO₄, 51567-69-2.

(31) K. Kawakami, M. Haga, and T. Tanaka, J. Organometal. Chem., 60, 363 (1973).

> Contribution from the Department of Chemistry, Northwestern University, Evanston, Illinois 60201

Interaction of Four-Coordinate Rhodium(I) Complexes with Boron-Containing Lewis Acids

D. D. LEHMAN and D. F. SHRIVER*

Received January 15, 1974

The interaction of Lewis acids with $RhCl(PPh_3)_3$, $RhClCO(PPh_3)_2$, $[Rh(diphos)_2]BPh_4$, $RhClC_8H_{12}PPh_3$, and $[RhC_8H_{12}-(PPh_3)_2]PF_6$ is reported. The Lewis acid complexes were characterized by stoichiometry, molecular weight, medium- and far-infrared, and ¹¹B, ³¹P, ¹⁹F, ¹H, and ¹⁰³Rh nmr data. Several types of reactions involving metal basicity, halide basicity, and phosphine abstraction were observed.

Of major interest in the study of platinum metal complexes have been their reactions with simple substrates such as O_2 , SO_2 , C_2H_4 , HX, RX, H_2 , CO, and C_2H_2 .¹ These reactions generally involve synergic bonding between the platinum metal and the substrate, while substrates that can complex

 For example, among the many papers appearing, are the following: (a) J. P. Collman, Accounts Chem. Res., 1, 136 (1968);
 L. Vaska, *ibid.*, 1, 335 (1968); (c) D. F. Shriver, *ibid.*, 3, 231
 (1970); (d) J. Halpern, *ibid.*, 3, 386 (1970); (e) J. P. Collman and W. R. Roper, Advan. Organometal. Chem., 7, 53 (1968); (f) J. A. Osborn, F. H. Jardine, J. F. Young, and G. Wilkinson, J. Chem. Soc. A, 1711 (1966); (g) M. C. Baird and G. Wilkinson, *ibid.*, 865 (1967);
 (h) T. Blackmore, M. I. Bruce, and F. G. A. Stone, *ibid.*, 2376 (1971);
 (i) T. E. Nappier, Jr., and D. W. Meek, J. Amer. Chem. Soc., 94, 306 solely as σ -electron acceptors, such as group III Lewis acids, have not been as extensively studied. Those platinum metal complexes that have been investigated with Lewis acids have usually led to the formation of metal base-Lewis acid adducts.^{11,2-8} Studies involving Lewis acids with other metal

(2) P. Powell and H. Noth, Chem. Commun., 637 (1966).

- (3) L. Vaska and D. L. Catone, J. Amer. Chem. Soc., 88, 5324 (1966).
- (4) R. N. Scott, D. F. Shriver, and L. Vaska, J. Amer. Chem. Soc., 90, 1079 (1968).
- (5) R. N. Scott, D. F. Shriver, and D. D. Lehman, Inorg. Chim. Acta, 4, 73 (1970).

(6) T. R. Durkin and E. P. Schram, Inorg. Chem., 11, 1054 (1972).

AIC40025L

Table I. Nmr Spectral Parameters for Rhodium Complexes and Related Compounds of Interest

	¹⁰³ Rh ^a	31 Pa		J _{P_P} ,	¹¹ B ^a			1ºFa
Compd	δ(Rh), ppm	δ(P), ppm	$J_{{f R}{f h}-{f P}},{f H}{f z}$	Hz	$\delta(B)$, ppm	J_{Rh-B} , Hz	J_{P-B} , Hz	δ(F), ppm
Ph ₃ P·BCl ₃		5.2			14.6		147	
Ph ₃ P·BF ₃		11.8			15.6		С	26.0c,d
diphos 2BCl ₃		-4.2			15.5		147	
BF ₃ Cl ^{-b}					16.6			-2
[Rh(diphos) ₂]BPh ₄		-57.3	136		е			
$[Rh(diphos)_2]BPh_4 \cdot 2BCl_3$	-1203	-51.0	93		15.0^{e}	153		
$[Rh(diphos)_2]BPh_4 \cdot 2BF_3$		-56.7	132		18.7e	С		31.9
RhCl(PPh ₃) ₃		-31.5	142	39				
		-48.3	192	. 39				
$RhCl(PPh_3)_3 f$	-1291	-31.5	142	38				
		-48.0	189	38				
RhCl(PPh ₃) ₃ ·2BCl ₃		-44.1	129		12.2			
RhCl(PPh ₃) ₃ ·2BF ₃		-32.5	168		17.2			28.4
		-49.5	194					
RhClC ₈ H ₁₂ PPh ₃	-1741	-30.4	149					
RhClC ₈ H ₁₂ PPh ₃ ·BCl ₃		g			14.8		155	
RhClC ₈ H ₁₂ PPh ₃ ·BF ₃		-28.6	149		15.9 <i>a</i>	С		28.8^{d}
RhClCO(PPh ₃) ₂ ^f	-1003	-29.1	-124					
RhClCO(PPh ₃) ₂ ·BCl ₃		-25.6	149		15.0	154		
		-33.9	149					
$RhClCO(PPh_3)_2 \cdot BF_3^h$		-29.7	151		20.5	С		29.2^{a}

 $v_{o}/v_{r} \ge 10^{6}$, where v_{r} and v_{o} are the resonant frequencies of the reference and sample, respectively, at a field strength such that the proton signal from TMS would be observed at 90 MHz. For $\delta(Rh)$, ν_r is the frequency of rhodium metal (2.840104 MHz); for $\delta(P)$, ν_r is the frequency for 85% H₃PO₄; for $\delta(B)$, ν_r is the frequency for B(OCH₃)₃; and for $\delta(F)$, ν_r is the frequency for BF₃. *b* This ion has been postulated as an intermediate in halide-exchange reactions involving BCl3: J. S. Hartman and G. J. Schrobilgen, Inorg. Chem., 11, 940 (1972). C We were unable to detect any coupling. \overline{d} Very broad. e The $\delta(B)$ for BPh₄ was not determined. f Value from T. H. Brown and P. J. Green, J. Amer. Chem. Soc., 92, 2359 (1970). ^g Not determined. ^h Run in 1,2-dichloroethane.

complexes have demonstrated that a variety of reactions can occur. These include ligand abstraction,⁹⁻¹² ligand bridg-ing,^{13,14} ligand exchange,^{15,16} and metal basicity.^{1c} In the present study this wide variety of reactions has been demonstrated for the first time for a series of seemingly closely related square-planar rhodium(I) complexes.

Experimental Section

Since the materials used are air sensitive in solution, all work was performed using Schlenk, drybox, or high-vacuum line techniques.¹⁷ The stoichiometries of the Lewis acid-metal complex adducts were determined by elemental analysis (Galbraith Laboratories, Inc., Knoxville, Tenn.), tensimetric titrations, net acid uptake experiments, and back-reaction of the isolated adducts with (CH₃)₃N. The adducts were characterized by cryoscopic molecular weight determina-tions in an air-free apparatus¹⁸ and infrared (Beckman IR-9 and IR-11) and nmr (Brucker HFX-90) spectra. All nmr spectra were obtained on 10-mm sample tubes that were sealed off under vacuum. The nmr spectral data are summarized in Table I. Rhodium frequencies

(7) R. J. Fitzgerald, N. Y. Sakkab, R. S. Strange, and V. P. Narutis, Inorg. Chem., 12, 1081 (1973).

- (8) C. B. Dammann, J. L. Hughey, IV, D. C. Jicha, T. J. Meyer, P. E. Rakita, and T. R. Weaver, Inorg. Chem., 12, 2206 (1973).
- (9) E. O. Fischer and K. Fitchel, Chem. Ber., 94, 1200 (1961). (10) W. P. Fehlhammer, W. Beck, and P. Pollman, Chem. Ber.,
- 102, 3903 (1969). (11) P. M. Druce, M. F. Lappert, and P. N. K. Riley, J. Chem.
- Soc., Dalton Trans., 438 (1972).
- (12) (a) H. C. Clark, K. R. Dixon, and W. J. Jacobs, J. Amer. Chem. Soc., 91, 1346 (1969); (b) H. C. Clark and K. R. Dixon, *ibid.*, 91, 596 (1969).
- (13) F. N. Tebbe and L. J. Guggenberger, J. Chem. Soc., Chem. (15) F. N. Febbe and E. S. Guggenberger, *S. Chem. Boc., Chem.* (14) (a) D. F. Shriver and A. Alich, *Inorg. Chem.*, 11, 2984
 (1972); (b) J. C. Kotz and C. D. Turnipseed, *Chem. Commun.*, 41
 (1970); (c) R. R. Schrieke and J. D. Smith, *J. Organometal, Chem.*,
 (10) C. (102)

- 31, C46 (1971); (d) J. S. Kristoff and D. F. Shriver, Inorg. Chem., 13, 499 (1974).
 - (15) W. Keim, J. Organometal. Chem., 8, P25 (1967).
- (16) (a) P. M. Druce and M. F. Lappert, J. Chem. Soc. A, 3595 (1971); (b) M. A. Bush, P. M. Druce, and M. F. Lappert, J. Chem.
- (191), (b) M. A. Bush, F. M. Duce, and M. F. Lappert, J. Chen Soc., Dalton Trans., 500 (1972).
 (17) D. F. Shriver, "The Manipulation of Air-Sensitive Com-pounds," McGraw-Hill, New York, N. Y., 1969.
 (18) D. F. Shriver, "The Manipulation of Air-Sensitive Com-
- pounds," McGraw-Hill, New York, N. Y., 1969, pp 161-163.

were determined in two cases by a triple irradiation experiment in which the proton-decoupled phosphorus spectrum was repeatedly scanned while irradiating at 100-Hz intervals in the rhodium frequency range of 2.830-2.850 MHz. The large Rh-P and Rh-B coupling constants made it impossible to decouple most of the phosphorus and boron spectra with the power available in the rhodium frequency range. There was no ¹H nmr evidence of hydride formation in any of the adducts. The infrared data were only useful to indicate the presence of a four-coordinate Lewis acid and therefore are only mentioned in special cases. Purification of the Lewis acids has been described previously.⁵ All the metal complexes were prepared according to phonously. An anomplexes were prepared according to standard literature methods: $[Rh(diphos)_2]BPh_4$,¹⁹ RhCl(PPh_3),²⁰ RhClc₈H₁₂PPh₃,²¹ RhClCO(PPh_3),²² [RhC₈H₁₂(PPh_3),]PF₆,²³ and Rh₂Cl₂(CO),²⁴ Solvents were refluxed over P₂O₅, distilled under nitrogen, and stored over an appropriate drying agent under vacuum or in a nitrogen atmosphere.

Results and Discussion

[Rh(diphos)₂]BPh₄.²⁵ The tensimetric titration of [Rh- $(diphos)_2$]BPh₄ with BF₃ (in C₆H₅Cl at -45°) or BCl₃ (in CH_2Br_2 at 0°) gave stoichiometries of 1.97 and 2.06 mol of acid/mol of rhodium complex, respectively. In addition, a back-reaction of the BF₃ adduct with excess (CH₃)₃N gave a stoichiometry of 2.06 BF₃ per rhodium, while an elemental analysis of the BCl₃ adduct gave the following results. Anal. Calcd for $RhC_{70}H_{66}B_3Cl_6P_4$: Rh, 7.1; C, 62.9; H, 4.7; B, 2.2; Cl, 14.7. Found: Rh, 7.1; C, 62.9; H, 5.1; B, 2.8; Cl, 15.6.

The nmr data for $[Rh(diphos)_2]BPh_4$ and its BF₃ and BCl₃ adducts are summarized in Table I. The ¹¹B nmr spec-

(19) A. Sacco and R. Ugo, J. Chem. Soc. A, 3274 (1964); diphos = bis(1,2-diphenylphosphino)ethane.

- (20) J. A. Osborn and G. Wilkinson, Inorg. Syn., 10, 67 (1967). (21) J. Chatt and L. M. Venanzi, J. Chem. Soc., 4735 (1957); $C_8H_{12} = cycloocta-1,5$ -diene.
- (22) D. Evans, J. A. Osborn, and G. Wilkinson, Inorg. Syn., 11, 99 (1968).
- (23) R. R. Schrock and J. A. Osborn, J. Amer. Chem. Soc., 93, 2397 (1971).
- (24) J. A. McCleverty and G. Wilkinson, Inorg. Syn., 8, 211 (1966).
- (25) An interaction between BF_3 and $[Rh(diphos)_2]Cl$ has been previously mentioned.³ However, for the present work, the $BPh_4^$ salt was chosen to avoid the inevitable reaction of BX₃ with Cl⁻.

Table II. Molecular Weights of the Rhodium Complexes and Their Adducts

Compd	Solvent	Calcd molality for soln $\times 10^3$	Av obsd mol wt	Formula wt	
RhCl(PPh ₃) ₃ ^a	Benzene		950 ± 40	925	
RhCl(PPh ₃) ₃	1,2-Dichloroethane	2.71	970	925	
$RhCl(PPh_3)_3 + 2BCl_3$	1,2-Dichloroethane	2.71	1070	1159	
RhClC ₈ H ₁₂ PPh ₃	1,2-Dichloroethane	8.83	510	509	
$RhClC_{s}H_{1}$, PPh ₃ + BCl ₃	1,2-Dichloroethane	8.83	415	626	
$RhClC_{8}H_{1}$, PPh ₃ + BF ₃	1,2-Dichloroethane	21.73	883	578	
$RhClC_{H_{12}}PPh_{3} + BF_{3}$	Benzene	6.39	860	578	
RhClCO(PPh ₃),	Benzene	2.88	685	691	
$RhClCO(PPh_3)_2 + BCl_3$	Benzene	2.88	797	808	

^a Average for four determinations; concentration range $(2.39-5.85) \times 10^{-3} m$.

tra for both adducts indicate that both BCl₃ and BF₃ are four-coordinate and are equivalent on the nmr time scale.²⁶ In addition, the BCl₂ adduct exhibits a doublet due to boronrhodium (S = 1/2) coupling. Rhodium-BF₃ coupling was not observed in any of the BF3 complexes studied, presumably owing to BF₃ exchange. The ³¹P nmr spectra of [Rh-(diphos)₂]BPh₄, Figure 1a, and [Rh(diphos)₂]BPh₄·2BCl₃, Figure 1b, each consist of a doublet and thus show that all four phosphorus atoms are equivalent. Formation of diphos- $2BCl_3$ can be eliminated since its ³¹P signal occurs at -4.2ppm or approximately 50 ppm upfield. That all four phosphorus atoms are still attached to the rhodium in [Rh(diphos)₂]·2BCl₃ is demonstrated by the ability to rhodium decouple the phosphorus spectrum, Figure 1c. The ³¹P spectrum for the BF₃ adduct, Figure 1d, is similar to the BCl₃ adduct except that BF₃ does not lower the J_{Rh-P} appreciably. The nmr equivalence of the boron and phosphorus atoms in both adducts suggests the structure shown in 1.

A tensimetric titration of $[Rh(diphos)_2]BPh_4$ with diborane at -78° in CH_2Cl_2 indicated that no reaction occurs.

 $RhCl(PPh_3)_3$. The initial molecular weight and kinetic data of Wilkinson and coworkers suggested that $RhCl(PPh_3)_3$ was completely dissociated in solution according to the reaction¹¹

 $RhCl(PPh_3)_3 \rightleftharpoons RhCl(PPh_3)_2 + PPh_3$

A reinvestigation of the molecular weight was prompted when the addition of BCl_3 to solutions of $RhCl(PPh_3)_3$ failed to produce the very stable adduct $Ph_3P\cdot BCl_3$. The molecular weight data, Table II, reveal that little dissociation occurs when oxygen is rigorously excluded from the solution,²⁷ and low dissociation has been confirmed by other techniques.²⁸

(26) Four-coordinate BCl₃ appears in the range of +10 to +16 ppm, while three-coordinate BCl₂X appears in the range of -38 to -20 ppm. Four-coordinate BF₃ appears from +14 to +21 ppm, while three-coordinate BF₂X is usually in the range of -10 to +8 ppm (chemical shifts relative to $B(OCH_3)_3$). See G. R. Eaton and W. H. Lipscomb, "NMR Studies of Boron Hydrides and Related Compounds," W. A. Benjamin, New York, N. Y., 1969, pp 436-507. (27) D. D. Lehman, D. F. Shriver, and I. Wharf, Chem. Commun., 1486 (1970).

(28) (a) D. R. Eaton and S. R. Suart, J. Amer. Chem. Soc., 90, 4170 (1968); (b) H. Arai and J. Halpern, Chem. Commun., 1571 (1971); (c) P. Meakin, J. P. Jesson, and C. A. Tolman, J. Amer. Chem. Soc., 94, 3240 (1972).

Figure 1. ³¹P spectra of (a) $[Rh(diphos)_2]BPh_4$, (b) $[Rh(diphos)_2]$ -BPh₄·2BCl₃, (c) $[Rh(diphos)_2]BPh_4$ ·2BCl₃ rhodium decoupled at 2.843520 MHz, and (d) $[Rh(diphos)_2]BPh_4$ ·2BF₃. *H* increases to the right.

When an excess of BCl₃ was added to a CH_2Br_2 solution of RhCl(PPh₃)₃ and stirred for 30 min at room temperature, a stoichiometry of 2.10 BCl₃ per rhodium was found based on the recovered, unreacted BCl₃. *Anal.* Calcd for Rh-C₅₄H₄₅B₂Cl₇P₃: Rh, 8.9; C, 55.9; H, 3.90; B, 1.9; Cl, 21.4. Found: Rh, 8.1; C, 56.0; H, 4.00; B, 2.6; Cl, 22.7. This 2:1 interaction was further demonstrated by a tensimetric titration at 0° in CH_2Cl_2 .

Tensimetric titration of RhCl(PPh₃)₃ with BF₃ at 0° in CHCl₃ revealed a stoichiometry of 1.89 BF₃ per rhodium complex and a back-reaction of the isolated BF₃ adduct with (CH₃)₃N gave 2.00 BF₃ per rhodium.²⁹

Despite a wealth of data on both of these adducts, their structures remain obscure. A molecular weight determination of the BCl₃ adduct, Table II, indicates that no dissociation occurs in solution. A comparison of the ³¹P nmr spectra of RhCl(PPh₃)₃, Figure 2a, RhCl(PPh₃)₃ + 1 BCl₃, Figure 2b, and RhCl(PPh₃)₃ + 2 BCl₃, Figure 2c, clearly shows that a 1:1 adduct is not formed. The distinct presence of both parent and 2:1 adduct in Figure 2b also demonstrates that intermolecular exchange of BCl₃ is not occurring on the nmr time scale. The simple doublet observed in RhCl-(PPh₃)₃·2BCl₃, Figure 2c, shows that phosphines are equivalent. This conclusion holds over the temperature range $-90 \text{ to } + 30^{\circ}$.³⁰ The absence of a ³¹P nmr signal for Ph₃P. BCl₃ agrees with the molecular weight evidence that extensive dissociation of RhCl(PPh₃)₃ does not occur. The presence of Ph₃P·BCl₃ is detected, however, if the samples are allowed to stand for several days. Apparently the rate of attack of BCl₃ on the metal complex is much faster than that of phosphine dissociation. Any proposed structure for this adduct must explain the equivalent non-temperature-dependent phosphine ³¹P nmr spectrum, the singlet in the ¹¹B spectrum, the lack of formation of a 1:1 adduct, and a molecular weight that indicates no dissociation. We considered that $B_2Cl_7^-$ might be formed as either a discrete ion or a ligand. The possibility that this hitherto unisolated ion³¹ might be stabilized by a large cation was explored by tensimetric titrations of Ph₄AsCl and Bu₄NCl with BCl_3 at 0°. In both instances only a 1:1 interaction was observed, thereby casting doubt on the existence of $B_2Cl_7^-$ in the rhodium adduct. We have been unable to arrive at another reasonable structure involving a single species.

The data available for the RhCl(PPh₃)₃·2BF₃ system do not assist in the structural characterization of the BCl₃ adduct, since they closely resemble those obtained for the BCl₃ system. Aside from BX₃ frequencies, medium- and far-infrared bands are very similar for the two boron halide adducts. A single ¹¹B nmr resonance also was observed in both cases, Table I. One difference, however, is that the ³¹P nmr spectrum of RhCl(PPh₃)₃·2BF₃ shows two sets of doublets with chemical shifts and coupling constants which indicate that the phosphine and halide arrangement of the parent is preserved in the adduct.³⁰

A tensimetric titration of RhCl(PPh₃)₃ with B(CH₃)₃ in CH_2Cl_2 at -45° does indicate a weak interaction. The ad-

Figure 2. ³¹P spectra of (a) RhCl(PPh₃)₃, (b) RhCl(PPh₃)₃ + 2 BCl₃, and (c) RhCl(PPh₃)₃ + 1 BCl₃. *H* increases to the right.

duct, however, evolves $B(CH_3)_3$ at room temperature.

RhClC₈**H**₁₂**PPh**₃. A tensimetric titration of RhClC₈-H₁₂PPh₃ with BCl₃ in C₆H₅Cl at 25° gave a stoichiometry of 1.07 BCl₃ per rhodium. From molecular weight data, Table II, it is apparent that extensive dissociation occurs upon adduct formation. Two compounds, identified by infrared data, were obtained when the adduct was treated with hexane: a white, hexane-insoluble material, Ph₃P· BCl₃, and an orange, hexane-soluble material, [RhCl(C₈-H₁₂)]₂.²¹ The overall reaction can be written as

 $2RhClC_8H_{12}PPh_3 + 2BCl_3 \rightarrow [RhClC_8H_{12}]_2 + 2Ph_3P\cdot BCl_3$

To our knowledge, this is the first reported example of a phosphine abstraction by a Lewis acid from a stable metal complex.

A phosphine abstraction reaction is not observed, however, when BF₃ is added to RhClC₈H₁₂PPh₃. In this case, addition of excess BF₃ to a stirred solution of RhClC₈H₁₂-PPh₃ in CH₂Cl₂ at room temperature yielded a stoichiometry of 0.97 BF₃ per rhodium, and tensimetric titration at -78° in CH₂Cl₂ gave a ratio of 1.16. Interestingly, the molecular weight data, Table II, suggest association rather than dissociation. The ¹¹B and ¹⁹F nmr signals are both very broad, presumably owing to BF₃ exchange. The ³¹P spectra of RhClC₈H₁₂PPh₃ and its BF₃ adduct show that a 2-ppm upfield shift occurs in the phosphine doublet upon addition of BF₃, but no change occurs in J_{Rh-P} . There is no evidence for either Ph₃P·BF₃ or BF₃Cl⁻ in the various nmr spectra.

⁽²⁹⁾ The elemental analyses of the BF₃ adducts in this study were consistently very low in fluoride and high in chloride. The spectroscopic evidence, however, clearly shows the presence of BF₃ and routine checks of the recovered BF₃ failed to show the presence of chloride.

 ⁽³⁰⁾ By contrast, the phosphorus spectrum of RhClH₂(PPh₃)₃ is very temperature dependent: C. A. Tolman, private communication.
 (31) Its existence has been postulated as an intermediate in

⁽³¹⁾ Its existence has been postulated as an intermediate in halide-exchange reactions involving BCl₃: J. S. Hartman and G. J. Schrobilgen, *Inorg. Chem.*, 11, 940 (1972).

The available data suggest, but by no means prove, that the predominant species in solution is 2.

RhClCO(PPh₃)₂. Powell and Noth previously reported a BCl₃ adduct of RhClCO(PPh₃)₂,² but further characterization of this complex seemed warranted because of the close similarity of the ¹¹B nmr spectrum of the adduct with that of Ph₃P·BCl₃, the small observed increase in ν_{CO} upon adduct formation,^{4,32,33} and the failure of related IrClCO(PPh₃)₂ to form a simple BCl₃ adduct.^{7,34}

The 1:1 stoichiometry RhClCO(PPh₃)₂·BCl₃ was confirmed from the net uptake of BCl₃ by a benzene solution of RhCl- $CO(PPh_3)_2$. A molecular weight determination, Table II, shows that dissociation does not occur upon BCl₃ addition, demonstrating that Ph₃P·BCl₃ is not formed. In addition to ¹¹B nmr data which agree with those of Powell and Noth, we obtained a ³¹P nmr spectrum, Table I, which indicates that the two phosphines are not equivalent. The infrared spectrum of the adduct shows the same increase in ν_{CO} from 1969 to 1989 cm⁻¹ that was reported.² In addition, absorptions at 298, 681, and 720 cm⁻¹ that are characteristic of four-coordinate BCl₃³⁵ and a 5-cm⁻¹ increase in ν_{Rh-Cl} (320 cm⁻¹) are observed. The presence of an unperturbed BCl_4 is ruled out by the lack of an absorption at 250 cm⁻¹.³⁶ This additional work supports the original formulation of RhClCO(PPh₃)₂·BCl₃ as a metal base-Lewis acid adduct.

Prior to the work of Powell and Noth, Scott had found that BF_3 does not form an isolable adduct with RhClCO(P-Ph₃)₂ in benzene or toluene.³⁴ However, when 1,2-dichloroethane is used as a solvent, a stoichiometric adduct can be isolated. The dependence of the stoichiometry on the solvent is unique to this system.

When a large excess of BF₃ reacted overnight at room temperature with a 1,2-dichloroethane solution of RhCl-CO(PPh₃)₂, a stoichiometry of 1.01 BF₃ per rhodium was found, based on recovered, unreacted BF₃. A back-reaction of the isolated adduct with excess (CH₃)₃N gave a stoichiometry of 1.1 BF₃ per rhodium. The infrared spectrum of RhClCO(PPh₃)₂ BF₃ has only two changes from the spectrum of the parent: a very small decrease in ν_{CO} from 1969 to 1963 cm⁻¹ (this is the first report of a decrease in ν_{CO} for adducts of RhClCO(PPh₃)₂) and absorptions due to four-coordinate BF₃ (1170-1050 and 850 cm⁻¹).³⁷ The

(32) For example, ν_{CO} increases by 65, 100, and 70 cm⁻¹ for RhClCO(PPh₃)₂·SO₂,³⁵ IrClCO(PPh₃)₂·2BF₃,⁴ and IrClCO(PPh₃)₂·SO₂,⁴ respectively.

- (33) K. W. Muir and J. A. Ibers, *Inorg. Chem.*, 8, 1921 (1969).
 (34) R. N. Scott, Ph.D. Thesis, Northwestern University,
- Evanston, Ill., 1968. (35) D. F. Shriver and B. I. Swanson, *Inorg. Chem.*, 10, 1354 (1971).
 - (36) J. A. Creighton, J. Chem. Soc., 6589 (1965).
 - (37) B. Swanson and D. F. Shriver, Inorg. Chem., 9, 1406 (1970).

 Table III.
 Summary of the Basic Sites in Rhodium

 Complexes Studied
 Image: Studied

 	BC13	BF ₃	
[Rh(diphos),]BPh4	Rhodium	Rhodium	
RhCl(PPh ₃) ₃	Chloride	Chloride or rhodium	
RhClC ₈ H ₁₂ PPh ₃	Phosphine	Rhodium?	
RhClCO(PPh ₃) ₂	Rhodium	Chloride	

nmr data summarized in Table I for RhClCO(PPh₃)₂·BF₃ resemble those of the parent. The ¹¹B and ¹⁹F spectra allow the elimination of Ph₃P·BF₃ and BF₃Cl⁻ as possible products. This series of minor changes in the nmr and infrared spectra leads us to postulate that the BF₃ bonds to chloride, as shown in **3**.

Miscellaneous Reactions. The addition of a large excess of BF_3 to a chlorobenzene solution of $[RhC_8H_{12}(PPh_3)_2]$ - PF_6 at 0° gave a stoichiometry of 1.1 BF₃ per rhodium, based on recovered, unreacted BF₃. The volatiles also contained PF_5 and an infrared examination of the solid revealed the presence of BF_4^- but not PF_6^- . The overall reaction is therefore

$$[RhC_8H_{12}(PPh_3)_2]PF_6 + BF_3 \rightarrow [RhC_8H_{12}(PPh_3)_2]BF_4 + PF_5$$

No reaction was observed when excess BCl_3 was added to a benzene solution of $Rh_2Cl_2(CO)_4$ at room temperature. Both reactants were recovered unchanged.

Summary

The basic sites on the Rh(I) complexes studied here are summarized in Table III. Metal-boron bonding is indicated for three adducts: RhClCO(PPh₃)₂·BCl₃, [Rh(diphos)₂⁺]· 2BCl₃, and [Rh(diphos)₂⁺]·2BF₃. Phosphine abstraction was established in the reaction of BCl₃ with RhCl(C₈H₁₂)-PPh₃. The other systems are more ambiguous but halide attachment is probable for some or all of these. Clearly subtle changes in the metal complex lead to significantly different reactions with BF₃ and BCl₃. Furthermore, the most convenient tools for the study of these reactions, B-X stretching frequencies and ¹¹B nmr spectra, are often not symptomatic of the mode of interaction.

Acknowledgment. This research was supported by the National Science Foundation through Grants GP-10117 and GP-28878. We give special thanks to D. Netzel for obtaining the nmr spectra and to J. Larsen for the design and construction of the special nmr equipment. We thank Dr. Chadwick Tolman for preprints and stimulating discussions.

Registry No. $[Rh(diphos)_2]BPh_4, 15007-81-5; [Rh(diphos)_2]-BPh_4.2BCl_3, 51716-80-4; [Rh(diphos)_2]BPh_4.2BF_3, 51716-82-6; RhCl(PPh_3)_3, 14694-95-2; RhCl(PPh_3)_3.2BCl_3, 51795-64-3; RhCl-(PPh_3)_3.2BF_3, 51795-63-2; BCl_3, 10294-34-5; BF_3, 7637-07-2; RhCl-C_8H_{12}PPh_3, 31781-57-4; RhClC_8H_{12}PPh_3.9El_3, 51795-62-1; RhCl-C_8H_{12}PPh_3.9El_3, 51716-85-9; RhClCO(PPh_3)_2, 15318-33-9; RhClCO-(PPh_3)_2.BCl_3, 51716-84-8; Rh, 7440-16-6; P, 7723-14-0; ¹¹B, 14798-13-1.$